February 17, 2020

ADDENDUM NUMBER 1 ON INVITATION TO BID ITB20DB-127

TITLE: Air Handling Unit Replacement at Communicore Building

Mandatory pre-bid meeting was held at the site on January 28, 2020 at 10:30 AM. Bid opening will be held February 26, 2020 at 3:00 PM in UF Procurement Services, 971 Elmore Drive, Gainesville, FL 32611.

This addendum shall be considered part of the Contract Documents for the above-mentioned project as though it had been issued at the same time and incorporated integrally therewith. Where provisions of the following supplementary data differ from those of the original Contract documents, this addendum shall govern and take precedence. Bidders are hereby notified that they shall acknowledge receipt of the addendum.

This addendum consists of:

1. Responses to vendor’s questions that were due before 5:00 PM on February 10, 2020.

2. Engineer’s Addendum dated February 14, 2020.

Debbie Berrier
Procurement Agent II

PLEASE ACKNOWLEDGE RECEIPT OF THIS ADDENDUM 1 AND RETURN WITH YOUR BID. FAILURE TO ACKNOWLEDGE THIS ADDENDUM COULD CONSTITUTE REJECTION OF YOUR BID.

VENDOR NAME

VENDOR ADDRESS

SIGNATURE

The Foundation for The Gator Nation
An Equal Opportunity Institution
Vendor Questions for ITB20DB-127 - Air Handling Unit Replacement at Communicore Building

Q1) Can Trane Custom be added to the list of acceptable manufacturers?
A1) Please see revised Section 23 73 15 included in the attached Engineer’s Addendum.

Q2) Will the asbestos noted in the survey report be abated by UF or should the Contractor include the abatement cost in their bid?
A2) Contractor will include the abatement in the scope of work. Air monitoring is not required.

Q3) In similar AHU projects in the past it was required that the concrete floors be sealed. Will that be a requirement for this project?
A3) Floor sealing is not required for this project.

Q4) There were no fire sprinklers observed in any of the areas currently occupied by AHU’s. Can you confirm that there is no requirement for adding fire sprinkler coverage as a part of this project?
A4) Fire protection is not within the scope of the project.

Q5) Is there a prescribed pre-qualification form for mechanical subcontractors that should be submitted as a part of the bid package?
A5) Please see the prequalification form in the original ITB document on page 15.
February 14, 2020

All Plans Holders

Re: Addendum
UF JMHSC Communicore AHU-5, 7, and 8 Replacement
UF Project Number: MP05285
MG Project Number: 19066

Bidders:
You are hereby notified of the following changes to the contract documents and design intent.

1. SPECIFICATIONS:
 a. Section 23 05 23 – HVAC VALVES: Replace section in its entirety with the attached section.
 b. Section 23 33 00 – DUCTWORK ACCESSORIES: Replace section in its entirety with the attached section.
 c. Section 23 73 15 – CUSTOM AIR HANDLING UNITS: Replace section in its entirety with the attached section.

2. DRAWINGS:
 a. Sheet G0.1 – COVER: Replace sheet in its entirety with the attached 24"x36" sheet dated February 14, 2020.
 g. Sheet M103 – MECHANICAL AHU-8 PENTHOUSE PLANS: Replace sheet in its entirety with the attached 24"x36" sheet dated February 14, 2020.
 h. Sheet M301 – MECHANICAL CONTROLS: Replace sheet in its entirety with the attached 24"x36" sheet dated February 14, 2020.
 k. Sheet E010 – ELECTRICAL BASEMENT PLAN: Replace sheet in its entirety with the attached 24"x36" sheet dated December 20, 2019.
 l. Sheet E010 – ELECTRICAL BASEMENT PLAN: Replace sheet in its entirety with the attached 24"x36" sheet dated December 20, 2019.
 m. Sheet E020 – ELECTRICAL GROUND FLOOR PLAN: Replace sheet in its entirety with the attached 24"x36" sheet dated December 20, 2019.
 n. Sheet E050 – ELECTRICAL THIRD FLOOR PLAN: Replace sheet in its entirety with the attached 24"x36" sheet dated December 20, 2019.
 o. Sheet E100 – ELECTRICAL ROOF PLAN: Replace sheet in its entirety with the attached 24"x36" sheet dated December 20, 2019.
 q. Sheet E102 – ELECTRICAL AHU-7 PENTHOUSE PLANS: Replace sheet in its entirety with the attached 24"x36" sheet dated December 20, 2019.
 r. Sheet E103 – ELECTRICAL AHU-8 PENTHOUSE PLANS: Replace sheet in its entirety with the attached 24"x36" sheet dated December 20, 2019.
 s. Sheet E201 – ELECTRICAL SCHEDULES: Replace sheet in its entirety with the attached 24"x36" sheet dated December 20, 2019.

Sincerely,

Craig Gulledge, PE, CxA, LEED AP BD+C
Principal
Attachments

ITB20DB-127 Addendum 1
PART 1 - GENERAL

1.1 Drawings and general provisions of Contract, including General and Supplementary Conditions and Division-1 Specification sections, apply to the work of this section.

1.2 This section is a Division-23 Basic Materials and Methods section, and is part of each Division-23 section making reference to or requiring valves specified herein.

1.3 Extent of valves required by this section is indicated on drawings and/or specified in other Division-23 sections.

1.4 Quality Assurance:
 A. Valve Dimensions: For face-to-face and end-to-end dimensions of flanged or welding-end valve bodies, comply with ANSI B16.10.
 B. Valve Types: Provide valves of same type by same manufacturer.

1.5 Approval Submittals: When required by other Division-23 sections, submit product data, catalog cuts, specifications, and dimensioned drawings for each type of valve. Include pressure drop curve or chart for each type and size of valve. Submit valves with Division-23 section using the valves, not as a separate submittal. For each valve, identify systems where the valve is intended for use.
 A. Check Valves: Type CK.
 B. Ball Valves: Type BA.
 C. Butterfly Valves: Type BF.

1.6 O&M Data Submittals:
 A. Submit maintenance data and a copy of approval submittals.

PART 2 - PRODUCTS

2.1 General: Provide factory-fabricated valves recommended by manufacturer for use in service indicated. Provide valves of types and pressure ratings indicated; provide proper selection as determined by Installer to comply with specifications and installation requirements. Provide sizes as indicated, and connections which properly mate with pipe, tube, and equipment connections.

2.2 Acceptable Manufacturers: Subject to compliance with requirements, provide valves of one of the producers listed for each valve type. The model numbers are listed for contractor’s convenience only. In the case of a model number discrepancy, the written description shall govern.

2.3 Check Valves:
 A. Construction: Construct valves of castings free of any impregnating materials. Construct valves with a bronze regrinding disc with a seating angle of 40° to 45°, unless a composition disc is specified. Provide stop plug as renewable stop for disc hanger, unless otherwise specified. Disc and hanger shall be separate parts with disc free to rotate. Support hanger pins on both ends by removable side plugs.
 B. Comply with the following standards:
 C. Types of check (CK) valves:
1. **Threaded Ends 2” and Smaller (CK1):** Class 125, bronze body, screwed cap, horizontal swing, bronze disc. Stockham B-319. Nibco T-413-BY. Crane 1707. Milwaukee 509.

2. **Soldered Ends 2” and Smaller (CK2):** Class 125, bronze body, screwed cap, horizontal swing, bronze disc. Stockham B-309. Nibco S-413-B. Crane 1707S. Milwaukee 1509.

3. **Flanged Ends 2-1/2” and Larger (CK3):** Class 125, iron body, bronze-mounted, bolted cap, horizontal swing, cast-iron or composition disc. Stockham G-931 or G-932 as applicable. Nibco F918-B. Crane 373. Milwaukee F2974 as applicable.

4. **Threaded Ends 2” and Smaller (CK4):** 200 WWP, bronze body, screwed cap, horizontal swing, regrinding type bronze disc.

5. **Flanged Ends 2-1/2” and Larger (CK5):** 175 WWP, iron body, bolted cap, bronze mounted, composition disc, UL listed, with ball drip if required. Stockham G-940. Nibco F-908-W.

7. **Flanged Ends 2-1/2” and Larger (CK7):** Class 250, iron body, bronze mounted, bolted cap, cast-iron disc. Stockham F-947. Nibco F-968-B. Crane 39E. Milwaukee F2970.

9. **Flanged Ends 2-1/2” and Larger (CK9):** Class 300, cast steel body, bolted cap, horizontal swing, seal welded seat rings, chromium stainless disc. Stockham 30-SF. Crane 159.

2.4 Ball Valves:

A. General: Select with port area equal to or greater than connecting pipe area, include seat ring designed to hold sealing material.

B. Construction: Ball valves shall be rated for 150 psi saturated steam and 600 psi non-shock cold water. Pressure containing parts shall be constructed of ASTM B-584 alloy 844, or ASTM B-124 alloy 377. Valves shall be furnished with blow-out proof bottom loaded stem constructed of ASTM B-371 alloy 694 or other approved low zinc material. Provide TFE packing, TFE thrust washer, and reinforced teflon seats. Valves 1” and smaller shall be full port design. Valves 1-1/4” and larger shall be conventional port design. Stem extensions shall be furnished for use in insulated piping where insulation exceeds 1/2” thickness.

C. Comply with the following standards:

1. MSS SP-72. Ball Valves with Flanged or Butt Welding Ends for General Service.
2. MSS SP-110. Ball Valves Threaded, Socket-Welding, Solder Joint, Grooved and Flared Ends.

D. Types of ball (BA) valves:

3. **Threaded Ends 1" and Smaller (BA3):** Bronze two-piece full port body, UL listed (UL 842) for use with flammable liquids and LP gas. Nibco T-585-70-UL.

4. **Threaded Ends 2" and Smaller (BA4):** 175 WWP, bronze two-piece body. Nibco KT-585-70-UL and KT-580-70-UL.

5. **Threaded Ends 2" and Smaller (BA5):** 400 WWP, bronze two-piece body. Nibco KT-580.

7. **Flanged Ends 2-1/2" and Larger (BA7):** Class 150, carbon steel full bore two-piece body with adjustable stem packing. Nibco F515-CS series. Apollo 88-240.

2.5 Butterfly Valves:

A. General: Comply with MSS SP-67, Butterfly Valves. Provide butterfly valves designed for tight shut-off. Where used for terminal or equipment removal or repair, select lug type valves. Select wafer type valves for other applications. Provide gear operators on all butterfly valves 6" and larger.

B. Types of butterfly (BF) valves:

1. **Wafer Type 3" and Larger (BF1):** 200 CWP, cast-iron body, lever-operated, **aluminum/bronze** disc, Type 410 stainless steel stem, EPT seat. Stockham LG-512. Nibco WD 2110-3. Crane 42-FXB-TL. Milwaukee MW222E-816.

2. **Lug Type 3" and Larger (BF2):** 200 CWP, cast-iron body, lever-operated, **aluminum/bronze** disc, Type 410 stainless steel stem, EPT seat. Stockham LG-712. Nibco LD 2110-3. Crane 44-FXB-TL. Milwaukee ML32B-8416.

5. **Wafer Type 4" and Larger (BF5):** 175 WWP, cast-iron body, gear-operated, nickel-plated ductile iron disc, Type 410 stainless steel stem, EPT seat, UL listed. Stockham LG-52U. Nibco WD 3510-8.

6. **Lug Type 4" and Larger (BF6):** 175 WWP, cast-iron body, gear-operated, nickel-plated ductile iron or aluminum bronze disc, Type 410 stainless steel stem, EPT seat, UL listed. Stockham LG-72U. Nibco LD 3510-8.

7. **Grooved Type 4" and Larger (BF7):** 175 WWP, cast-iron body, gear-operated, nickel-plated ductile iron or aluminum bronze disc, Type 410 stainless steel stem, EPT seat, UL listed. Stockham LG-82U. Nibco GD 1765-2.

2.6 Valve Features:

A. General: Provide valves with features indicated and, where not otherwise indicated, provide proper valve features as determined by Installer for installation requirements. Comply with ANSI B31.1.

B. Valve features specified or required shall comply with the following:
1. **Bypass**: Comply with MSS SP-45, and except as otherwise indicated, provide manufacturer's standard bypass piping and valving. Provide for gate valves 8" and larger.
2. **Drain**: Comply with MSS SP-45, and provide threaded pipe plugs complying with applicable Division-23 pipe or tube section. Provide for gate valves 8" and larger.
3. **Flanged**: Provide valve flanges complying with ANSI B16.1 (cast iron), ANSI B16.5 (steel), or ANSI B16.24 (bronze).
5. **Solder-Joint**: Provide valve ends complying with ANSI B16.18.
6. **Trim**: Fabricate pressure-containing components of valve, including stems (shafts) and seats from brass or bronze materials, of standard alloy recognized in valve manufacturing industry unless otherwise specified.
7. **Non-Metallic Disc**: Provide non-metallic material selected for service indicated in accordance with manufacturer's published literature.
8. **Renewable Seat**: Design seat of valve with removable disc, and assemble valve so disc can be replaced when worn.
9. **Extended Stem**: Increase stem length by 2" minimum, to accommodate insulation applied over valve.
10. **Mechanical Actuator**: Provide factory-fabricated gears, gear enclosure, external chain attachment and chain designed to provide mechanical advantage in operating valve for all valves 4" and larger that are mounted more than 7'-0" above the floor, or are otherwise difficult to operate regardless of height.

PART 3 - EXECUTION

3.1 **Installation**:

A. **General**: Install valves where required for proper operation of piping and equipment, including valves in branch lines to isolate sections of piping. Locate valves so as to be accessible and so that separate support can be provided when necessary. Install valves with stems pointed up, in vertical position where possible, but in no case with stems pointed downward below horizontal plane.

B. **Insulation**: Where insulation is indicated, install extended-stem valves, arranged in proper manner to receive insulation.

C. **Applications Subject to Corrosion**: Do not install bronze valves and valve components in direct contact with steel, unless bronze and steel are separated by dielectric insulator.

D. **Mechanical Actuators**: Install mechanical actuators as recommended by valve manufacturer.

3.2 **Selection of Valve Ends (Pipe Connections)**: Except as otherwise indicated, select and install valves with the following ends or types of pipe/tube connections:

A. Tube Size 2" and Smaller: Threaded valves.
B. Pipe Size 2" and Smaller: Threaded valves.
C. Pipe Size 2-1/2" and Larger: Flanged valves.

3.3 **Non-Metallic Disc**: Limit selection and installation of valves with non-metallic disc to locations indicated and where foreign material in piping system can be expected to prevent tight shutoff of metal seated valves.

3.4 **Renewable Seats**: Select and install valves with renewable seats, except where otherwise indicated.

3.5 **Installation of Check Valves**: Install in horizontal position with hinge pin horizontally perpendicular to center line of pipe. Install for proper direction flow.
END OF SECTION
PART 1 - GENERAL

1.1 Drawings and general provisions of Contract, including General and Supplementary Conditions and Division-1 Specification sections, apply to work of this section.

1.2 Division-23 Basic Mechanical Materials and Methods sections apply to work of this section.

1.3 Extent of ductwork accessories work is indicated on drawings and in schedules, and by requirements of this section.

1.4 Refer to other Division-23 sections for testing, adjusting, and balancing of ductwork accessories; not work of this section.

1.5 Codes and Standards:

 A. SMACNA Compliance: Comply with applicable portions of both SMACNA "HVAC Duct Construction Standards, Metal and Flexible" and "Fire, Smoke and Radiation Damper Installation Guide for HVAC Systems".

 B. UL Compliance: Construct, test, and label fire dampers in accordance with the latest UL Standard 555 "Fire Dampers and Ceiling Dampers". Construct, test, and label smoke dampers in accordance with UL Standard 555S "Leakage Rated Dampers for use in Smoke Control Systems".

 C. NFPA Compliance: Comply with applicable provisions of NFPA 90A "Air Conditioning and Ventilating Systems" pertaining to installation of ductwork accessories.

1.6 Approval Submittals:

 A. Product Data: Submit manufacturer's technical product data for each type of ductwork accessory, including dimensions, capacities, and materials of construction; and installation instructions as follows:

 1. Control dampers
 2. Fire dampers
 3. Smoke dampers
 4. Duct access doors
 5. Flexible connections

 B. O&M Data Submittals: Submit manufacturer's maintenance data including parts lists for fire dampers, smoke dampers. Include this data, product data, and a copy of approval submittals in O&M manual.

PART 2 - PRODUCTS

2.1 Fire and Smoke Dampers:

 A. Fire Dampers: Provide curtain type fire dampers, UL classified and labeled per UL 555, of types and sizes indicated. Construct casings and blades of galvanized steel. Damper shall not restrict duct free area when open. Dampers shall be rated for dynamic closure under flow and pressure. Provide sleeves and mounting angles. Provide fusible link rated at 160 to 165°F unless otherwise indicated. Provide damper with positive lock in closed position. All dampers shall be spring activated. Basis of design:

 1. 1-1/2 HR: Greenheck DFD - Style B for rectangular, Style CR for round, Style CO for oval.
 2. 1-1/2 HR: Greenheck DFD-110 for transfer grilles in narrow partitions.
 3. 3 HR: Greenheck DFD350 - Style B for rectangular, Style CR for round, Style CO for oval.
B. Smoke Dampers: Provide motorized smoke dampers, UL classified under UL-555S, of types and sizes indicated. Construct frame and blades of galvanized steel. Provide sleeves. Provide damper assembly complete with electric operator that will fail safe if fire interrupts operational power. Provide for remote testing or resetting capability after response to smoke detector operation. Entire assembly shall be rated at least leakage class II (10 CFM/sq. ft. at 1” w.g. at 250°F). Provide memory stop adjustment for utilization by test and balance contractor on all dampers. Provide modulating dampers where indicated on controls drawings. Basis of design:

1. Systems to 1,500 FPM duct velocity or 2.5” w.g.: Class II Greenheck SMD-202.
2. Systems over 1,500 FPM duct velocity or 2.5” w.g.: Class I, airfoil blades, Greenheck SMD-301.

C. Fire/Smoke Dampers: Provide motorized combination fire/smoke dampers, UL classified under the latest UL-555 and UL-555S in types and sizes indicated, with casing constructed of galvanized steel, and galvanized steel interlocking blades. Provide factory furnished sleeves and angles. Provide damper assembly complete with electric operator that will fail safe if fire interrupts operational power. For low leakage applications, entire assembly shall be rated at least leakage class I (4 CFM / sq. ft. at 1” w.g. at 250°F). // Entire assembly shall be rated at least leakage class II (10 CFM/sq. ft. at 1” w.g. at 250°F). Provide for remote testing or resetting capability after response to smoke detector operation. Provide fusible link rated at 160 - 165°F unless otherwise indicated that will close the damper under fire conditions and not permit operation by actuator until link is replaced. // Provide firestat rated at 160 - 165°F unless otherwise noted to electrically close the damper under fire conditions with remote testing or resetting capability after response to firestat operation, and with position indicator switches. Provide memory stop adjustment for utilization by test and balance contractor on all dampers. Provide modulating dampers where indicated on controls drawings. Basis of design:

1. Systems to 1,500 FPM duct velocity or 2.5” w.g.: Class I, Greenheck FSD-211M.
2. Systems over 1,500 FPM duct velocity or 2.5” w.g.: Class I, airfoil blades, Greenheck FSD-311M.

D. Acceptable Manufacturers: Subject to compliance with requirements, provide fire and smoke dampers by Air Balance, Inc., American Warning & Ventilating, Arrow Louver and Damper, Greenheck or Ruskin Mfg. Co.

2.2 Turning Vanes: Provide manufactured or fabricated single wall turning vanes and vane runners, constructed in accordance with SMACNA “HVAC Duct Construction Standards”.

2.3 Duct Access Doors:

A. General: Provide duct access doors of size indicated, or as required for duty indicated.

B. Construction: Construct of same or greater gauge as ductwork served. Provide insulated doors for insulated ductwork. Provide flush frames for uninsulated ductwork, extended frames for externally insulated duct. Provide one side hinged, other side with one handle-type latch for doors 12” high and smaller, 2 handle-type latches for larger doors.

C. Acceptable Manufacturers: Subject to compliance with requirements, provide access doors by Air Balance, Inc., Duro Dyne Corp., Ruskin Mfg. Co., or Ventfabrics, Inc.

2.4 Flexible Connections:

Page 2 of 4
100% CONSTRUCTION DOCUMENTS
A. General: Provide flexible duct connections wherever ductwork connects to vibration isolated equipment. Construct flexible connections of neoprene-coated flameproof fabric crimped into duct flanges for attachment to duct and equipment. Make airtight joint. Provide adequate joint flexibility to allow for thermal, axial, transverse, and torsional movement, and also capable of absorbing vibrations of connected equipment.

B. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following: Duro Dyne Corp., Flexaust (The) Co., or Ventfabrics, Inc.

PART 3 - EXECUTION

3.1 Examine areas and conditions under which ductwork accessories will be installed. Do not proceed with work until unsatisfactory conditions have been corrected in manner acceptable to Installer.

3.2 Installation of Ductwork Accessories:

A. Install ductwork accessories in accordance with manufacturer's installation instructions, with applicable portions of details of construction as shown in SMACNA standards, and in accordance with recognized industry practices to ensure that products serve intended function.

B. Install balancing dampers at all main ducts adjacent to units in return air, outside air and where indicated.

C. Install control dampers in the outside air duct and return air duct for each air handler. Coordinate damper motor operator signal for UL listed smoke dampers with control contractor. Damper actuators for outside air control dampers are provided by controls contractor.

D. Install turning vanes in square or rectangular 90° elbows in supply, return, and exhaust air systems, and elsewhere as indicated.

E. Install access doors to open against system air pressure, with latches operable from either side, except outside only where duct is too small for person to enter. Install on entering air side of reheat coils. Install at fire dampers and smoke dampers. Opening size shall be per NFPA 90A for servicing fire and smoke dampers. Provide label with 1-1/2" letters to indicate location of fire protection devices.

F. Install flexible connections in ductwork such that the clear length of the connector is approximately two inches. Provide thrust restraints as required. Flexible material shall not be so slack as to take a definite concave or convex shape during fan operation. Install directly at AHU opening.

G. Coordinate with other work, including ductwork, as necessary to interface installation of ductwork accessories properly with other work.

Install fire dampers within fire walls and floors at locations shown on the mechanical drawings. Install in strict accordance with the manufacturer's printed instructions, NFPA 90A, and UL 555. Basis of design installation is detailed on the drawings. Provide out of wall dampers where indicated on the drawings. Install ceiling fire dampers to protect openings in rated ceilings at locations shown on the mechanical drawings. Install in strict accordance with the manufacturer's printed instructions, NFPA 90A, and UL 555. Provide diffuser radiation shields where required. Basis of design installation is detailed on the drawings.

3.3 Install smoke dampers on both sides of air handling units (to include filters) in units over 15,000 cfm. Install at smoke partitions. All locations are shown on the mechanical drawings. Install in strict accordance with the manufacturer's printed instructions, NFPA 90A, and UL 555S. Basis of design installation is detailed on the drawings.
3.4 **Fire and Smoke Dampers**: Notify Engineer at least 24 hours in advance of ceiling installation or chase closure so that complete fire and smoke damper installation can be observed. A copy of the manufacturer’s printed installation instructions shall be available at the site.

3.5 Operate installed ductwork accessories to demonstrate compliance with requirements. Test for air leakage while system is operating. Repair or replace faulty accessories as required to obtain proper operation and leakproof performance.

3.6 **Adjusting and Cleaning**:

A. **Adjusting**: Adjust ductwork accessories for proper settings. Install fusible links in fire dampers and adjust for proper action.

B. Final positioning of manual dampers is specified in Division-23 section "Testing, Adjusting, and Balancing". However, the system shall be left functional with all dampers open or throttled.

C. **Cleaning**: Clean factory-finished surfaces. Repair any marred or scratched surfaces with manufacturer’s touch-up paint.

D. **Furnish extra fusible links** to Owner, one link for every 10 installed of each temperature range; obtain receipt.

END OF SECTION
PART 1 - GENERAL

1.1 Drawings and general provisions of Contract, including General and Supplementary Conditions and Division 1 Specification sections, apply to work of this Section.

1.2 Division-23 Basic Mechanical Materials and Methods sections apply to work of this section.

1.3 Refer to other Division-23 sections for other devices installed piping system, supports, Testing, Adjusting, and Balancing, Building Automation System.

1.4 Refer to Division-23 section “Vibration Isolation” for vibration isolation.

1.5 Extent of work required by this section as indicated on drawings and schedules, and by requirements of this section.

1.6 Refer to Division 26 sections for power supply wiring from power source to power connection; not work of this Section. All fan power cabling shall be installed in raceway.

1.7 Codes and Standards:
 A. Manufacturer’s Qualifications: Firms regularly engaged in manufacture of custom air handling units for the HVAC industry with characteristics, sizes, and capacities required, whose products have been in satisfactory use in similar service for not less than five years.
 B. Regulatory Requirements: Comply with the codes and standards specified.
 C. must be manufactured in an ISO 9001 registered facility.
 E. AMCA 210 - Laboratory Methods of Testing Fans for Rating Purposes.
 F. AMCA 300 - Test Code for Sound Rating Air Moving Devices.
 H. AMCA 500 - Test Methods for Louver, Dampers, and Shutters.
 I. AHRI 260 - Sound Rating of Ducted Air Moving and Conditioning Equipment
 K. AHRI 430 - Standard for Central Station Air Handling Units
 L. NFPA 70 - National Electrical Code.
 N. NFPA 262 - Standard Method of Test for Flame Travel and Smoke of Wires and Cables for Use in Air-Handling Spaces.
 O. SMACNA - HVAC Duct Construction Standards Metal and Flexible.
 P. UL 900 - Test Performance of Air Filter Units.

1.8 Quality Assurance:
 A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 B. NFPA Compliance: Comply with NFPA 90A for design, fabrication, and installation of air-handling units and components.
 C. ASHRAE/IESNA 90.1 Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6 - "Heating, Ventilating, and Air-Conditioning".
 D. Comply with NFPA 70 for unit and all auxiliary components.
 E. Performance Ratings: Conform to AHRI Standards; bear AHRI 430 certified rating seal. If unit is not AHRI 430 rated, unit shall be tested in accordance with the standards to establish acceptability.
 F. Sound Ratings: Test air handling unit in accordance with AMCA 300 (ASHRAE 68) and AHRI 260 Guidelines.
G. Air Coils: Certify capacities, pressure drops, and selection procedures in accordance with AHRI 410.

H. Equipment shall fit into the space available with adequate clearances meeting manufacturer’s requirements for service and as determined by the Engineer. The Contractor shall not assume that all of the manufacturers listed as acceptable manufacturers will provide a unit that will fit in the space allocated.

1.9 Approval Submittals:

A. Product Data: Submit manufacturer's product data to include the following:

1. Provide all technical information relevant to the product being provided, including but not limited to all the information shown on the drawing schedules and of this section. It is the responsibility of the supplier to highlight any variances in equipment characteristics.

2. Dimensions, weights, capacities, certifications, shipping splits, component performance, electrical characteristics, casing construction details, wiring interconnections, gauges, and finishes of materials.

3. Provide fan curves with specified operating points clearly plotted.

4. Provide coil selection worksheets at scheduled operating points. Clearly indicate proper consideration for altitude and air density. Indicate coil tube fin and casing construction.

5. Provide filter information, including initial APD, final APD, dust spot efficiency, final dust holding capacity, filter media description, filter frame details, and filter removal details.

6. Submit sound power levels for both air handling unit inlet, outlet, and radiated at rated capacity. If the unit exceeds sound power levels at scheduled conditions, the manufacturer must provide sound attenuators and meet specified brake horsepower requirements without additional connected power requirements.

7. Submit electrical requirements for power supply wiring including wiring diagrams interlocks and control wiring. Clearly indicate factory installed and field installed wiring. Submit load amperage draw, required, maximum overcurrent protection, and short circuit current ratings. Short circuit current rating shall be no less than 65kA.

B. Coordination Drawings: Floor plans and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

1. Mechanical-room or space layout and relationships between components and adjacent structural and mechanical elements.

2. Support location, type, and weight.

1.10 Warranty:

A. The complete unit shall be covered by a parts warranty issued by the manufacturer covering the first year of operation. This warranty period shall start upon receipt of start-up forms for the unit or eighteen months after the date of shipment, whichever occurs first.

B. The installing contractor shall provide labor warranty during the unit's first year of operation.

PART 2 - PRODUCTS

2.1 Manufacturers: Subject to compliance with requirements, provide product indicated on
schedules by one of the following: Temtrol, York Custom, Haakon, Trane Custom (Fort Smith) or Ingenia.

2.2 Casing Construction and Performance:

B. Forming: Form walls, roofs, and floors as required for minimal deflection. Maximum deflection at any point on the unit casing shall be limited to 1/200th of the overall panel width or height. The unit casing leakage shall not exceed 0.5 CFM per square foot of cabinet area at the scheduled inches positive or negative static pressure.
C. Casing Joints: Provide no-through metal construction to preclude fastener condensation and heat transfer. Field joints are only acceptable at shipping splits and shall be installed to match appearance and performance of factory joints.
D. Sealing: Seal all joints with water-resistant sealant to comply with leakage requirement. Field applied sealant is only acceptable at shipping splits and shall be installed to match appearance and performance of factory applied sealant.
E. Interior Liner: Provide minimum 20-gauge galvanized steel in all sections.
F. Casing air leakage shall be field tested to less than 1% at 8" wg positive or negative pressure.

2.3 Casing Insulation and Fastening:

A. Materials: Provide 2 inch thick, R-12 minimum foam insulation that complies with NFPA 90A and 90B and have a fire hazard classification of 25/50 (per ASTM-84 and ULF 723).
B. Location and Application: Factory applied in all sections to extend fully inside each casing section to the internal surface of panels. Secure insulation tightly within casing to preclude movement and maximize thermal performance. Insulation shall be installed and sealed between outside and inside casing.
C. Units details must be designed the manufacturer with thermal breaks and insulation performance to prevent condensation formation on unit exterior at operating internal temperatures in an unconditioned room with 85/65 db/wb temperatures.

2.4 Base Construction:

A. Provide heavy gauge structural steel tubing, C-channel, or I-beam welded perimeter construction with external lifting lugs and internal welded cross members to support internal unit components. Provide no-through metal construction to preclude fastener condensation and heat transfer. Field joints are only acceptable at shipping splits and shall be installed to match appearance and performance of factory joints.
B. Provide 2" floor cavity closed cell spray foam insulation with embedded drain pans and piping. Insulation shall be UL 94HF1 rated and sealed between the bottom liner and floor liner.
C. Floor Liner: Provide continuous 0.125 in aluminum checker plate flooring installed on the base framing with attachment and reinforced from below such that no mechanical fastening is required from above.
D. Provide no-through metal construction to preclude fastener condensation and heat transfer. Field joints are only acceptable at shipping splits and shall be installed to match appearance and performance of factory joints.
E. Sealing: Seal all joints with water-resistant sealant to comply with leakage requirement. Field applied sealant is only acceptable at shipping splits and shall be installed to match appearance and performance of factory applied sealant.
F. Bottom Liner: Provide minimum 20-gauge galvanized steel in all sections.
G. Air leakage rates shall be less than 1% at 8" wc.

2.5 Access Doors:

A. Door Fabrication: Formed, reinforced, and welded, double-wall and insulated panels with thermal breaks of same materials, thicknesses, and performance as casing.

B. Hinges: A minimum of two wedge-lever-type latches, operable from inside and outside. Provide Ventlock 310 high pressure latches. Arrange doors to be opened against air-pressure differential.

C. Gasket: Neoprene, applied around entire perimeters of panel frames.

D. Fabricate windows in all doors of double-glazed, safety glass with an air space between panes and sealed with interior and exterior rubber seals.

E. Size: At least 18 inches wide by 5'-10" or full height of unit where the height of the unit does not allow a full height door. Fan access section door must be width of largest motor size.

1. Minimum locations and size (refer to drawings for basis of design):
 a. Access Section: 2'-0"
 b. Cooling Coil Section: 2'-4"
 c. Preheat Coil Section: 1'-0"
 d. Filter Section: 8"
 e. Motor: 1'-6"

F. Service Light: 100-W equivalent LED fixture in each section with single switched junction box located outside fan section door.

2.6 Drains:

A. Condensate Drain Pans:

1. Fabricated double bottom style 16-gauge stainless steel drain pan with welded corners and two percent slope in three planes to collect condensate from cooling coils (including coil piping connections, coil headers, and return bends) to direct water toward drain connection. Extend drain pan 8" past face of coil to collect any carryover moisture.

2. Drain Connection: Located at lowest point of pan and sized to prevent overflow or accumulation. Terminate with threaded nipple on one or both ends of pan.

3. Provide stacked chilled water coils where height of the unit exceeds 36". Provide intermediate drain pan to collect condensate from top coil. Extend upper drain pan outlets to lower pan with stainless steel downspout.

B. Access Section Drains:

1. Provide floor type drain in all sections and terminate 1" outlet through base rail with cap.

2.7 Fan Array:

A. Fan arrays shall consist of multiple direct-drive, modular plenum fans selected to provide the scheduled airflow at a minimum value of the sum of the scheduled external static pressure and the internal static pressure. Fans shall be statically and dynamically balanced and designed for continuous operation at maximum rated fan speed and motor horsepower. Fans shall have a sharply rising pressure characteristic extending through the operating range and continuing to rise beyond the peak efficiency to ensure quiet and stable operation. Fans shall have a non-overloading design with self-limiting horsepower characteristics and shall reach a peak in the
normal selection area. All fans shall be capable of operating over the minimum pressure class limits as specified in AMCA's Standard 2408-69.

B. Fans shall be tested in accordance with AMCA 210 and AMCA 300 test standards for air moving devices and shall be guaranteed by the manufacturer to deliver rated published performance levels. Fans shall be licensed to bear the AMCA certified ratings seal for fan inlet sound, fan outlet sound, and air performance.

C. Airfoil Fan Wheels: Wheels constructed entirely of aluminum to reduce weight and vibration. Airfoil blades shall be extruded aluminum, and continuously welded around all edges. The wheel and fan inlet are matched and have precise running tolerances for maximum performance and operating efficiency. In addition, fans shall be run tested at the specified operating speed prior to shipment. Each fan shall be dynamically balanced as a complete assembly to achieve Balance Quality Grade G6.3 for the rotating assembly. Maximum vibration shall be within the limits ANSI/AMCA 204 Fan Application Category BV-3. Balance readings shall be taken electronically in the axial, vertical, and horizontal directions. Records of each fan balance shall be made available upon request.

D. Provide factory mounted flow ring at fan inlet and output signal to building automation system. Coordinate with building automation system signal requirements and provide all necessary hardware to output digital signal as required.

E. All wiring shall be installed in raceway. See Division 26.

F. Internal Vibration Isolation:
 1. An integral all welded steel vibration isolation base shall be provided for the fan and motor.
 2. Isolators shall be free standing with sound deadening pads and leveling bolts.
 3. Spring diameter to compressed operating height ratio shall be 1 to 1.
 4. The spring deflection shall be minimum of 2 in.

G. Back-Draft Dampers:
 1. Each fan shall have an individual industrial grade low leak backdraft damper.
 2. Frame shall be minimum 9" deep x 2" (229 x 51) flanged 12 (2.8) gauge galvanized steel channel. The blades shall be maximum 7" (178) wide, minimum .080 (2) thick, 6063T5 extruded aluminum airfoil shaped with integral structural reinforcing tube running full length of each blade.
 3. Damper blades shall be equipped with silicone rubber seals mechanically locked into extruded blade slots. Adhesive type seals are not acceptable. Adhesive type seals are not acceptable. Dampers shall be equipped with vinyl jamb seals for low leakage application. Wind stop type seals are not acceptable.
 4. Axles shall be minimum 3/4" (19) diameter with machined edge to provide positive locking connection to blades. Full round axles are not acceptable.
 5. Bearings shall be ball style pressed into frame.
 6. Linkage shall be minimum 3/16" thick 3/4" (5 x 19) bar located on face of blade in airstream. Submittal must include leakage, pressure drop, and maximum pressure data based on AMCA Publication 500 testing.

H. Motors:
 1. All fan motors shall comply with NEMA and IEEE for temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Division 23 Section "HVAC Motors".
 2. Enclosure type shall be totally enclosed, fan cooled (TEFC) or open drip proof (ODP).
3. All motors shall be NEMA Premium™ efficient motors as defined in NEMA MG 1.
4. Motors shall be rated for continuous duty at full load at 40°C ambient temperature rise.
5. Motor sizes shall be as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.15.
6. Motors shall be "inverter ready", complying with NEMA STD MG1 PART 31.4.4.2.
7. Motors shall have an insulation Class F.
8. Motors shall include a shaft grounding ring.

2.8 Filters:
 A. Prefilters: Filters shall be 30% efficient, MERV 7 pleated, disposable type. Each filter shall consist of a non-woven cotton and synthetic fabric media, media support grid, and enclosing frame. The filter shall be listed by Underwriters' Laboratories as Class 2.
 B. Prefilters shall be installed in a prefabricated channel rack.
 C. Prefilters shall be lift-out upstream of the filter.

2.9 Final Filters:
 A. Final filters shall be high performance, 2” deep pleated, totally rigid, and disposable type. Each filter shall consist of high density charged fiber media, media supports, and enclosing frame with gasket seal.
 B. Final filter media shall have an average of 90-95% on the ASHRAE Test Standard (52-76) and a MERV 15 rating. Filters shall be Underwriters' Laboratories Standard 900 approved. Basis of Design: Columbus Industries, Inc CI Micro Shield Zero-Bypass.
 C. Holding Frames: Holding frames shall be factory fabricated of 16 gauge galvanized steel and shall be equipped with gaskets on all 4 sides of the filter and 2 heavy duty positive sealing fasteners. Each fastener shall be capable of withstanding 25 lbs pressure without deflection and be attached or removed without the use of tools.
 D. Final filters shall be slide out through access door.

2.10 Water Coils:
 A. All coils shall meet or exceed all capacities specified on the mechanical schedule for the project at full rated conditions and part-load conditions. All coil performance shall be certified by the manufacturer in accordance with ARI Standard 410.
 B. Construct coils of configuration plate fins and seamless tubes. Aluminum fins shall have collars drawn, belled and firmly bonded to tubes by means of mechanical expansion of tubes. Do not use soldering or tinning in bonding process.
 C. Construct coil casings of minimum 16 gauge steel with formed end supports and top and bottom channels. Coils in cooling service shall have stainless steel casings and coils in heating-only service shall have galvanized steel casings.
 D. Coils shall be fully enclosed within casing and cooling coils shall be on mounted 304 stainless steel angle racks manufactured to allow coils to slide out individually. Heating coils shall be mounted on galvanized angle racks manufactured to allow coils to slide out individually.
 E. Removable coil access panels shall be provided for removal of coils through the casing wall. Coils shall be individually removable away from the access side. Coils must be individually racked, removable through the side access panels.
 F. Pipe connections shall be on the same end, extended through the casing for ease of connection, employing a plate over the connection to minimize leakage, and shall be threaded flanged.
G. Water coils shall be drainable.
H. Clearly label supply and return headers on outside of units such that direction of coil water-flow is counter to direction of unit air-flow.
I. Coils shall be proof tested to 300 psig and leak tested to 200 psig air pressure under water.
J. Coil height shall not exceed 36”. Provide multiple stacked coil as required.
K. Construct headers of round copper pipe.
L. Construct tubes of 0.625 O.D. minimum 0.025 thick of Copper and construct fins of 0.010 thick of Aluminum.
M. Provide vent and drain for complete coil drainage.
N. Provide “bolt-on” coil construction where required for interior unit coil removal and as shown on the drawings.

2.11 UVC Light Fixture:
A. UV-C fixturing shall consist of a power supply, power supply housing, "plenum rated" wiring loom, lamp plug, lamp-plug protector, encapsulated lamp, and lamp support.
B. Power supply shall be CSA and UL Listed as a variable input type (120-277 Vac ±10%), 50-60 Hz with a programmed rapid start. They shall be designed as high power factor, class P, sound rated "A", type 1 outdoor and with inherent thermal protection and no PCBs. They shall be capable of operating in temperatures of from 33-190°F, designed to facilitate plug-and-play wiring and be capable of producing the specified output and organism destruction at no more than 15W of power consumption for each square foot of treated, cross sectional area. The power supply shall be capable of properly powering 1-145W UV-C lamp or 1- or 2-75W UV-C lamps while ensuring at least 9000 hours of lamp life, and with greater than 80% of its initial output, at the lamps "end of lamp life" phase. Power supply shall be protected against "end of lamp life" conditions, warranted for 5 years, and be labeled for field wiring. Power supply shall be installed interior or exterior to air handler within a power supply housing.
C. Power supply housing shall be constructed of 20ga galvanized, powder coated steel. They shall be designed to facilitate NEC regulated power supply installation outside plenums. Each housing shall be capable of properly holding, grounding, and wiring either four or eight ballasts within to protect against electrical shock and moisture, as well as RF and EMI leaks.
D. Plenum rated wiring looms shall be of sufficient length to facilitate lamp connection to a remotely located power supply. The lamp and loom shall be capable of being mounted anywhere in the system and/or as shown on the drawings. The loom shall be meet UL Subject 13 and UL 1581, and Article 725 of the NEC. The loom jacket shall be constructed of UV-C resistant materials and shall have an internal aluminum/Mylar shield.
E. Lamp plug shall be of the 4-pin type capable of accommodating a single-ended HO lamp.
F. Lamp plug protector shall of UV resistant materials and designed to shrink 3-1 over the lamp plug and wiring loom for protection against electrical shock, moisture, and separation.
G. Lamp supports may be single or dual types, magnetically or permanently affixed within the irradiated cavity to interior surface of air handler or to vertical supports (by others). They shall be constructed of UVC resistant materials and provide for maximum flexibility in quick lamp positioning, removal, and holding power.
H. Each lamp shall contain less than 8 milligrams of mercury and shall be hermetically laminated with a thin layer of UV-C transmissible Teflon® to provide protection against
lamp breakage and to ensure lamp contents from a broken lamp are contained. Lamp life shall be 9000 hours with no more than a 20% output loss at the end of the lamp's life. Lamps shall be constructed with UV-C proof material bases and shall not produce ozone.

I. Fixtureless lamps are to be installed in sufficient quantity and in such a manner so as to provide an equal distribution of the available UV-C energy. When installed, the UV-C energy produced shall be of the lowest possible reflected and shadowed losses and shall be distributed in a 360-degree pattern within the cavity to provide the highest UV-C energy absorption by microbial products in the air.

J. Intensity – The minimal UV-C energy striking a surface shall be sufficient to continuously destroy a mono-layer of mold and/or bacteria in less than one hour while operating in air temperatures of 1-70°C.

K. Installation – The ballast housing shall be capable of installation within the air stream and/or within a power supply housing. Lamps shall be mounted to irradiate the intended surface(s) as well as all of the available line of sight airstream through proper lamp placement and incident angle reflection.

L. All doors to any UV-C assembly and/or within view of any UV-C assembly must include mechanical interlock switch to ensure that all UV-C assemblies will be de-energized when any of these accesses are opened.

M. Provide auxiliary relay to control the UV-C lights via building automation system.

2.12 Variable Frequency Drives:

A. Comply with applicable requirements in Division 23 Section "Variable Frequency Drives".

B. Provide a single VFD. All motor circuit protectors can be located in starting device enclosure or, if required by design, in a separate enclosure. Motor circuit protector enclosure must be located and mounted at a minimal distance from motors in the fan array. Provide remote indication and start/stop of individual fans by means of auxiliary contacts.

C. Provide cooling provisions and filtration for VFD enclosure.

PART 3 - EXECUTION

3.1 Examination:

A. Examine areas and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine casing insulation materials and filter media before air-handling unit installation. Reject insulation materials and filter media that are wet, moisture damaged, or mold damaged.

C. Examine roughing-in for hydronic, and condensate drainage piping systems and electrical services to verify actual locations of connections before installation.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 Installation:

A. Equipment Mounting:

1. Arrange installation of units to provide access space around air-handling units for service and maintenance.

B. Do not operate fan system until filters (temporary or permanent) are in place. Replace temporary filters used during construction and testing, with new, clean filters upon building occupancy.
C. Install filter-gauge, static-pressure taps upstream and downstream of filters. Mount filter gauges on outside of filter housing or filter plenum in accessible position. Provide filter gauges on filter banks, installed with separate static-pressure taps upstream and downstream of filters.

3.3 Connections:

A. Comply with requirements for piping specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
B. Install piping adjacent to air-handling unit to allow service and maintenance.
C. Connect piping to air-handling units with flexible connectors.
D. Connect condensate drain pans and extend to nearest floor drain. Construct deep trap at connection to drain pan and install cleanouts at changes in direction.
E. Hot- and Chilled-Water Piping: Comply with applicable requirements in Division 23 Section "Hydronic Piping" and Section "Hydronic Piping Specialties". Install shutoff valve and union or flange at each coil supply connection. Install balancing valve and union or flange at each coil return connection.
F. Connect duct to air-handling units with flexible connections. Comply with requirements in Division 23 Section "Ductwork Accessories".

3.4 Field Quality Control:

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
B. Tests and Inspections:
 1. Hydronic Leak Test: After installation, fill water coils with water, and test coils and connections for leaks.
 2. Airside Leak Test: Completely pressurize casing and field pressure test any unit requiring field assembly. Field assembled units shall be tested for 1% or less leakage at design airflow and 8" wg at positive and negative pressure. Test shall be conducted without additional sealant systems required by factory and with only blank-offs at inlet and outlet.
 3. Fan Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment. Make corrections.
C. Air-handling unit or components will be considered defective if unit or components do not pass tests and inspections. Make correction at manufacturer's direction and retest for compliance.
D. Prepare test and inspection reports once units are operational. Include description of corrective actions taken for any failed tests and inspections.

3.5 Adjusting:

A. Adjust damper linkages for proper damper operation.
B. Comply with requirements in Division 23 Section "HVAC Testing and Balancing" for air-handling system testing, adjusting, and balancing.

3.6 Cleaning:

A. After completing system installation and testing, adjusting, and balancing air-handling unit and air-distribution systems and after completing startup service, clean air-handling units internally to remove foreign material and construction dirt and dust.
Clean fan wheels, cabinets, dampers, coils, and filter housings, and install new, clean filters following cleaning.

END OF SECTION
SITE LOCATION MAP

JHMHC COMMUNICORE AHU-5, 7, & 8 REPLACEMENT
THE UNIVERSITY OF FLORIDA

MP05285
1249 CENTER DRIVE
GAINESVILLE, FL 32610

Sheet List

<table>
<thead>
<tr>
<th>Sheet No.</th>
<th>Sheet Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>M001</td>
<td>MECHANICAL LEGEND, NOTES & SCHEDULE</td>
</tr>
<tr>
<td>M002</td>
<td>MECHANICAL DETAILS</td>
</tr>
<tr>
<td>M100</td>
<td>MECHANICAL ROOF PLAN</td>
</tr>
<tr>
<td>M101</td>
<td>MECHANICAL AHU-5 PENTHOUSE PLANS</td>
</tr>
<tr>
<td>M102</td>
<td>MECHANICAL AHU-7 PENTHOUSE PLANS</td>
</tr>
<tr>
<td>M103</td>
<td>MECHANICAL AHU-8 PENTHOUSE PLANS</td>
</tr>
<tr>
<td>M301</td>
<td>MECHANICAL CONTROLS</td>
</tr>
<tr>
<td>M302</td>
<td>MECHANICAL CONTROLS</td>
</tr>
<tr>
<td>M303</td>
<td>CONTROL FLOOR PLANS</td>
</tr>
<tr>
<td>E001</td>
<td>ELECTRICAL LEGEND, DETAILS, & SCHEDULES</td>
</tr>
<tr>
<td>E010</td>
<td>ELECTRICAL BASEMENT PLAN</td>
</tr>
<tr>
<td>E020</td>
<td>ELECTRICAL GROUND FLOOR PLAN</td>
</tr>
<tr>
<td>E050</td>
<td>ELECTRICAL THIRD FLOOR PLAN</td>
</tr>
<tr>
<td>E100</td>
<td>ELECTRICAL ROOF PLAN</td>
</tr>
<tr>
<td>E101</td>
<td>ELECTRICAL AHU-5 PENTHOUSE PLANS</td>
</tr>
<tr>
<td>E102</td>
<td>ELECTRICAL AHU-7 PENTHOUSE PLANS</td>
</tr>
<tr>
<td>E103</td>
<td>ELECTRICAL AHU-8 PENTHOUSE PLANS</td>
</tr>
<tr>
<td>E201</td>
<td>ELECTRICAL SCHEDULES</td>
</tr>
</tbody>
</table>

PROJECT SUMMARY:

REPLACEMENT OF AHU-5 AND ASSOCIATED ZONE CONTROLS. AHU-5 LOCATED IN MECHANICAL PENTHOUSE NO. 1 AND SERVES SIX ZONES OF THE THIRD FLOOR EAST LIBRARY.

REPLACEMENT OF AHU-7 AND AHU-8. PROJECT DOES NOT INCLUDE ZONE UV TREATEMENT, CONTROLS, BUT DOES INCLUDE FIRE DAMPER REPLACEMENT. PROJECT DOES NOT INCLUDE ZONE UV TREATMENT OR CONTROLS.

PROJECT DOES NOT INCLUDE ZONE UV TREATMENT OR CONTROLS.

ADDITIVE ALTERNATE #1 ALL WORK ASSOCIATED WITH AHU-5 INCLUDING REPLACEMENT OF ALL PENTHOUSE LEVEL FIRE DAMPERS.

ADDITIVE ALTERNATE #2 ALL WORK TO REPLACE THE PENTHOUSE LEVEL FIRE DAMPERS FOR AHU-7 & 8.

UNIT PRICING:

REFER TO FIRE DAMPER SCHEDULE.

100% CONSTRUCTION DOCUMENTS
DECEMBER 20, 2019
MECHANICAL LEGEND

MECHANICAL ABBREVIATIONS

MECHANICAL GENERAL NOTES

CUSTOM AIR HANDLING UNIT SCHEDULE

CODES AND STANDARDS

EXISTING CONDITIONS NOTES

FIRE DAMPER SCHEDULE
- THERMOMETER (TYP)
- PRESSURE GAUGE
- AND COCK (TYP)
- TWO-WAY CONTROL VALVE
- VENTURI FLOW METER
- FLEXIBLE CONNECTION (TYP)
- HOSE END GATE VALVE
- UNION OR FLANGES (TYP)
- HEATING COIL
- MANUAL AIR VENT (TYP)
- STRAINER
- CHILLED WATER RETURN
- CHILLED WATER SUPPLY
- CALIBRATED BALANCING VALVE (TYP)
- HOSE BIBB WITH CAP
- SPECIFIED DUCT INSULATION
- 16 GAUGE MINIMUM SLEEVE EXTENDING THROUGH WALL ON BOTH SIDES. WALL. TYPICAL.
- BREAK AWAY CONNECTION PER UL LISTING FOR SELF SUPPORTING DAMPER.
- INSULATED, LABELED, AND ACCESSIBLE DUCT ACCESS DOOR.
- FUSIBLE LINK WITH TYPE II FIRE DAMPER.
- 1-1/2" x 1-1/2" x 1/8" RETAINING ANGLE TOP BOTTOM & SIDES, BOTH SIDES OF WALL WITH 1/4" DIA. NUTS AND BOLTS OR WELDS 8" ON CENTER PER UL LISTING.
- SPECIFIED DUCT INSULATION
- PIPE FULL SIZE OF DRAIN CONNECTION
- LOCATE TRAPS FOR CLEANING ACCESSIBILITY.
- ADJUSTABLE VOLUME DAMPER WITH POSITIONING LEVER, EXTENSION SECTION (INSULATED DUCT ONLY) AND LOCKING WING NUT. VOLUME DAMPER SHALL BE SINGLE BLADE OR MULTI-BLADE DEPENDING ON DUCT SIZE, SEE SPECIFICATIONS.
- LOCATE DAMPER AT LEAST 12" DOWNSTREAM OF TAKEOFF.
- AIR FLOW (SUPPLY ONLY, RETURN OR EXHAUST AIRFLOW IS REVERSED.)
- MATCH AHU LENGTH
- MATCH AHU WIDTH
- NOTES:
 1. SHOP FABRICATE ENTIRE ASSEMBLY. ALL COMPONENTS ARE HOT DIP GALVANIZED.
 2. SUBMIT SUPPORTS FOR SHOP DRAWING REVIEW AND APPROVAL PRIOR TO FABRICATION AND AFTER APPROVAL OF AHU SUBMITTAL.
 3. FABRICATE AND INTEGRATE WITH OTHER SYSTEMS AS PER SPECIFICATIONS.
 4. ADJUSTABLE VOLUME DAMPER WITH POSITIONING LEVER, EXTENSION SECTION (INSULATED DUCT ONLY) AND LOCKING WING NUT. VOLUME DAMPER SHALL BE SINGLE BLADE OR MULTI-BLADE DEPENDING ON DUCT SIZE, SEE SPECIFICATIONS.
 5. LOCATE DAMPER AT LEAST 12" DOWNSTREAM OF TAKEOFF.
 6. AIR FLOW (SUPPLY ONLY, RETURN OR EXHAUST AIRFLOW IS REVERSED.)
 7. MATCH AHU LENGTH
 8. MATCH AHU WIDTH

NOTES:
- SPECIFIED DUCT INSULATION
- PIPE FULL SIZE OF DRAIN CONNECTION
- LOCATE TRAPS FOR CLEANING ACCESSIBILITY.
- ADJUSTABLE VOLUME DAMPER WITH POSITIONING LEVER, EXTENSION SECTION (INSULATED DUCT ONLY) AND LOCKING WING NUT. VOLUME DAMPER SHALL BE SINGLE BLADE OR MULTI-BLADE DEPENDING ON DUCT SIZE, SEE SPECIFICATIONS.
- LOCATE DAMPER AT LEAST 12" DOWNSTREAM OF TAKEOFF.
- AIR FLOW (SUPPLY ONLY, RETURN OR EXHAUST AIRFLOW IS REVERSED.)
- MATCH AHU LENGTH
- MATCH AHU WIDTH

NOTES:
- SPECIFIED DUCT INSULATION
- PIPE FULL SIZE OF DRAIN CONNECTION
- LOCATE TRAPS FOR CLEANING ACCESSIBILITY.
- ADJUSTABLE VOLUME DAMPER WITH POSITIONING LEVER, EXTENSION SECTION (INSULATED DUCT ONLY) AND LOCKING WING NUT. VOLUME DAMPER SHALL BE SINGLE BLADE OR MULTI-BLADE DEPENDING ON DUCT SIZE, SEE SPECIFICATIONS.
- LOCATE DAMPER AT LEAST 12" DOWNSTREAM OF TAKEOFF.
PHASING NOTES:
1. Coordinate any chilled water outage with owner's schedule. Provide 2 week notice.
2. Phase work to prioritize AHU-8 replacement first and AHU-7 second.
3. Phase work to limit outage of existing operational AHUs to a 5 business days. Provide premium time work as required to complete replacement work within this timeframe.
4. Coordinate drainage and refill of chilled water system for tie-in of new insulated chilled water piping, valves, and accessories. Ensure that piping is properly flushed prior to startup.
5. Provide chemical treatment services for new piping and refilled system by owner's chemical treatment company.

SHEET NOTES:
- Protect roof from damage, wear & tear, and staining during construction activities.
- Provide roof protection.
- Field verify location of available staging, rigging, and crane operation on site prior to bidding.
- Protect all existing site infrastructure from damage during construction activities. Repair any and all damage from construction activities at no added cost to owner.
- Existing door to be utilized for access to penthouses. Coordinate physical size of new equipment components with available door opening.
- Existing rooftop equipment access area and control panels shall be reviewed and confirmed.
- Provide additional mechanical roof plan for review and confirmation.

M100 MECHANICAL ROOF PLAN

THE UNIVERSITY OF FLORIDA
JIMMO COMMUNICATION CORE
AHU 5, 7, & 8 REPLACEMENT
THE UNIVERSITY OF FLORIDA
1249 CENTER DRIVE
GAINESVILLE, FL 32610

DECEMBER 20, 2019

100% CONSTRUCTION DOCUMENTS

R. Craig Gulledge II
PE - 69158

Mitchell Gulledge Engineering, Inc.
210 SW 4th Avenue
Gainesville, FL 32601
FL License EB-31501 p.352.745.3991
www.mitchellgulledge.com
MECHANICAL AHU-5 PENTHOUSE - DEMOLITION

ADDITIVE ALTERNATE NOTES:

- Ensure that all HHW and CHW outages are coordinated with the owner.

GENERAL NOTES:

Prior to start of demolition, the contractor shall perform pretest.

TAB PRETEST NOTES:

Pretest shall be performed by the contractor at the owner's expense. The test shall be performed in accordance with the test plan as described in the pretest notes given sheet 66.

TAB PRETEST NOTES:

- Ensure that all HHW and CHW outages are coordinated with the owner.

GENERAL NOTES:

Prior to start of demolition, the contractor shall perform pretest.

TAB PRETEST NOTES:

Pretest shall be performed by the contractor at the owner's expense. The test shall be performed in accordance with the test plan as described in the pretest notes given sheet 66.

DEMO ALTERNATE NOTES:

- Ensure that all HHW and CHW outages are coordinated with the owner.

GENERAL NOTES:

Prior to start of demolition, the contractor shall perform pretest.

TAB PRETEST NOTES:

Pretest shall be performed by the contractor at the owner's expense. The test shall be performed in accordance with the test plan as described in the pretest notes given sheet 66.

DEMO ALTERNATE NOTES:

- Ensure that all HHW and CHW outages are coordinated with the owner.

GENERAL NOTES:

Prior to start of demolition, the contractor shall perform pretest.

TAB PRETEST NOTES:

Pretest shall be performed by the contractor at the owner's expense. The test shall be performed in accordance with the test plan as described in the pretest notes given sheet 66.

DEMO ALTERNATE NOTES:

- Ensure that all HHW and CHW outages are coordinated with the owner.
DEMOLITION NOTES:
- DEMOLISH EXISTING AIR HANDLER
- DEMOLISH EXISTING SUPPLY DUCT
- DEMOLISH EXISTING RETURN DUCT
- DEMOLISH EXISTING OUTDOOR AIR DUCT
- DEMOLISH EXISTING CHWS&R PIPING AND PIPING ACCESSORIES. UTILIZE CHWS&R ISOLATION VALVES LOCATED ABOVE CEILING ON 3RD FLOOR.
- DEMOLISH EXISTING CONDENSATE DRAIN PIPING
- DEMOLISH EXISTING AHU

GENERAL NOTES:
- ENSURE CHW OUTAGES ARE COORDINATED WITH THE OWNER.

TAB PRETEST NOTES:
PRIOR TO START OF DEMOLITION TAB CONTRACTOR SHALL PERFORM PRETEST OF EXISTING SYSTEM AS DESCRIBED IN TAB PRETEST NOTES ON SHEET M001.

SHEET NOTES:
- NEW AHU AND VFD ON STEEL SUPPORTS
- NEW TO EXISTING DUCT CONNECTION AT THE FLOOR
- NEW TO EXISTING DUCT CONNECTION ABOVE AHU
- NEW TO EXISTING 4" CHWS&R PIPE CONNECTION.
- PROVIDE NEW ISOLATION VALVES AND DEVICES. SEE DETAIL.
- NEW 2" TRAPPED CONDENSATE DRAIN PIPE TO EX FLOOR
- DRAIN.
- OUTDOOR AIRFLOW STATION IN VERTICAL EX STORM PIPE ABOVE NEW DUCT
- NEW CONTROL PANEL
- NEW OUT OF FLOOR FIRE DAMPER
- COOLING COIL PULL CLEARANCE. PROVIDE DEMOUNTABLE COIL AND REMOVABLE AHU SIDE PANEL.
- STACKED COOLING COIL
- FLEXIBLE DUCT CONNECTION
- OUTDOOR AIR CONTROL DAMPER BY AHU MANUFACTURER
- ACCESS DOOR
- SUPPLY FAN ARRAY
- SUPPLY FAN CONTROL PANEL BY AHU MANUFACTURER
- SMOKED DATED BY AHU MANUFACTURER
- PRE FILTER AND FINAL FILTER
- BACERAIL SUPPORT WITH VIBRATION ISOLATION PADS.
- FILTER AIR DIFFERENTIAL PRESSURE GAUGE
- SERVICE LIGHT IN EACH SECTION
- UV LIGHTS WITH CONTACTOR CONTROLLED BY BAS
- SINGLE VFD WITH BYPASS
- MAINTAIN EXISTING PNEUMATIC CONTROL TO THE REMAINDER OF THE BUILDING SERVICES.
- DRAIN PAN FLOAT SENSOR
- SIDE LOAD FILTER DOORS
- UV LIGHTS WITH CONTACTOR CONTROLLED BY BAS
DEMOLITION NOTES:

- DEMOLISH EXISTING AIR HANDLER.
- TURN OVER EXISTING FAN MOTOR TO OWNER.
- DEMOLISH EXISTING SUPPLY DUCT.
- DEMOLISH EXISTING RETURN DUCT.
- DEMOLISH EXISTING OUTDOOR AIR DUCT.
- DEMOLISH EXISTING CHWS&R PIPING AND PIPING ACCESSORIES. UTILIZE CHWS&R ISOLATION VALVES LOCATED IN CHASE ADJACENT TO RESTROOMS ON 3RD FLOOR.
- DEMOLISH EXISTING CONDENSATE DRAIN PIPING.
- DEMOLISH EXISTING AHU.

GENERAL NOTES:

- ENSURE CHW OUTAGES ARE COORDINATED WITH THE OWNER.

SHEET NOTES:

- NEW AHU AND VFD ON STEEL SUPPORTS.
- NEW TO EXISTING DUCT CONNECTION AT THE FLOOR.
- NEW TO EXISTING 4" CHWS&R PIPE CONNECTION.
- PROVIDE NEW ISOLATION VALVES AND DEVICES. SEE DETAIL.
- NEW 2" TRAPPED CONDENSATE DRAIN PIPE TO EXISTING FLOOR DRAIN.
- OUTDOOR AIR CONTROL DAMPER IN VERTICAL EXISTING STORM PIPE ABOVE AHU.
- NEW CONTROL PANEL.
- PROVIDE NEW OUT OF FLOOR FIRE DAMPER.
- NEW TO EXISTING OA DUCT CONNECTION AT ABOVE AHU.
- COOLING COIL PULL CLEARANCE WITH DEMOUNTABLE COIL AND REMOVABLE AHU SIDE PANEL.
- STACKED COOLING COIL.
- FLEXIBLE DUCT CONNECTION.
- OUTDOOR CONTROL DAMPER.
- ACCESS DOOR.
- SUPPLY FAN ARRAY.
- SUPPLY FAN CONTROL PANEL BY AHU MANUFACTURER.
- SMOKED AND PRE-FILTERS AND FINAL FILTER.
- BASE RAIL SUPPORT WITH VIBRATION ISOLATION PADS.
- FILTER AIR DIFFERENTIAL PRESSURE GAUGE.
- SERVICE LIGHT IN EACH SECTION.
- UV LIGHTS WITH CONTACTOR FOR BASE CONTROL.
- SINGLE VFD WITH BYPASS.
- MAINTAIN EXISTING PNEUMATIC SYSTEM FOR THE REMAINDER OF THE BUILDING SERVICE.
- DRAIN PAN FLOAT SENSOR.
SMOKE DETECTORS SHALL BE INSTALLED IN DUCTWORK WHERE SHOWN ON PLANS. WHEN SMOKE DETECTOR
DRAIN PAN FLOAT SWITCH:

SUPPLY FAN SHALL SHUT OFF AND THE BAS SHALL COMMAND THE
DRAIN PAN FLOAT SWITCH
RA SMOKE DAMPER COMMAND

SUPPLY AIR TEMPERATURE CONTROL:
POINT TO THAT LISTED IN THE AIR HANDLING UNIT SCHEDULE.

OUTDOOR AIRFLOW RESET:
(ADJUSTABLE) AS LISTED IN THE AIR HANDLING UNIT SCHEDULE.

MODULATE FAN SPEED AND MAINTAIN A STATIC PRESSURE SETPOINT (ADJ) AS SENSED BY STATIC PRESSURE SENSOR MOUNTED IN THE SUPPLY
TO OPERATE WHEN THE SUPPLY FAN STARTS AND STOPS. PROVIDE END SWITCH WITH VISUAL INDICATOR ON SMOKE DAMPER TO PREVENT FAN
SMOKE DAMPER CONTROL:
CONTROL, AND ENABLE COOLING COIL CONTROL.

OCCUPIED MODE:
THE AHU CONTROLLER SHALL ACTIVATE THE OCCUPIED AND UNOCCUPIED MODES BASED ON TIME OF DAY SCHEDULE.

UNOCCUPIED MODE:
WHEN UNOCCUPIED MODE IS ACTIVATED THE BAS SHALL DISABLE FAN CONTROL, CLOSE OUTDOOR AIR DAMPER, AND DISABLE COOLING COIL
CONTROL.

AHU-7 & 8 CONTROL SEQUENCE

AHU-7 AND AHU-8 POINTS LIST

SYSTEM POINT DESCRIPTION
OCTOPUS

ALARM DESCRIPTION
OCTOPUS

ALARM SETTING
OCTOPUS

TIME DELAY
OCTOPUS

AHU-7 AND AHU-8 CONTROL DIAGRAM

AHU-7 & 8 CONTROL DIAGRAM

AHU-7 AND AHU-8 POINTS LIST

SYSTEM POINT DESCRIPTION
OCTOPUS

ALARM DESCRIPTION
OCTOPUS

ALARM SETTING
OCTOPUS

TIME DELAY
OCTOPUS

AHU-7 AND AHU-8 CONTROL DIAGRAM

AHU-7 & 8 CONTROL DIAGRAM

AHU-7 AND AHU-8 POINTS LIST

SYSTEM POINT DESCRIPTION
OCTOPUS

ALARM DESCRIPTION
OCTOPUS

ALARM SETTING
OCTOPUS

TIME DELAY
OCTOPUS
RETURN AIR HUMIDITY
RA SMOKE DAMPER COMMAND
HIGH STATIC SAFETY:
TO FCP
SMOKE DETECTORS:
AI
PROVIDE STATIC PRESSURE SWITCH (ADJUSTABLE) WHERE SHOWN ON CONTROL DIAGRAM. SET STATIC PRESSURE
PROVIDE SMOKE DAMPERS WHERE SHOWN ON PLANS. INTERLOCK ASSOCIATED SUPPLY AND RETURN SMOKE DAMPERS
DRAIN PAN FLOAT SWITCH:
-
-
RETURN AIR TEMPERATURE
PROVIDE STATIC PRESSURE SWITCH (ADJUSTABLE) WHERE SHOWN ON CONTROL DIAGRAM. SET STATIC PRESSURE

AHU-5 POINTS LIST

<table>
<thead>
<tr>
<th>SYSTEM POINT DESCRIPTION</th>
<th>LIST NO.</th>
<th>ALARM DESCRIPTION</th>
<th>ALARM SETTINGS</th>
<th>TIME DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPPLY AIRFLOW X AI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRAIN PAN FLOAT SWITCH X DI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRAIN PAN ALARM SWITCH ACTIVATED 0 MIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZONE 6 TEMPERATURE X AI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZONE 6 TEMPERATURE ALARM TEMP +/- 3 DEG FROM SET-POINT 30 MIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZONE 6 SUPPLY AIR TEMPERATURE X AI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZONE 6 DAMPER OUTPUT X AO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZONE 5 SUPPLY AIR TEMPERATURE X AI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZONE 5 DAMPER OUTPUT X AO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZONE 3 TEMPERATURE X AI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZONE 3 TEMPERATURE ALARM TEMP +/- 3 DEG FROM SET-POINT 30 MIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZONE 3 SUPPLY AIR TEMPERATURE X AI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZONE 1 TEMPERATURE X AI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZONE 1 TEMPERATURE ALARM TEMP +/- 3 DEG FROM SET-POINT 30 MIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZONE 1 SUPPLY AIR TEMPERATURE X AI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZONE 1 DAMPER OUTPUT X AO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEATING HOT WATER RETURN TEMPERATURE X AI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COOLING COIL CONTROL VALVE OUTPUT X AO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COOLING COIL DISCHARGE TEMPERATURE X AI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUPPLY SMOKE DAMPER COMMAND X DO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIGH STATIC PRESSURE SAFETY SWITCH STATUS X DI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIGH DP SAFETY ALARM SWITCH ACTIVATED 1 MIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUPPLY FAN#4 STATUS X DI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAN FAILURE STATUS DOES NOT MATCH COMMAND 4 MIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUPPLY FAN#3 STATUS X DI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAN FAILURE STATUS DOES NOT MATCH COMMAND 3 MIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OUTDOOR AIR DAMPER OUTPUT X AO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOW STATIC PRESSURE SAFETY SWITCH STATUS X DI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOW DP SAFETY ALARM SWITCH ACTIVATED 1 MIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIXED AIR TEMPERATURE X AI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RETURN AIR CO2 X AI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RETURN AIR HUMIDITY X AI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AHU-5 CONTROL SEQUENCE

1. THE AHU CONTROL SHALL ADJUST THE OCCUPIED AND UNOCCUPIED MODES BASED ON THE TIME OF DAY SCHEDULE. THE OCCUPIED SCHEDULE SHALL AUTOMATICALLY ADJUST THE SUPPLY AIR TEMPERATURE TO MAINTAIN A COMFORTABLE ZONE AIR TEMPERATURE IN AN OCCUPIED ZONE. WHEN ACTIVATED, IT LOWERS THE SYSTEM AIR TEMPERATURE IN UNOCCUPIED ZONE.
2. UNOCCUPIED MODE: WHEN THE UNOCCUPIED MODE IS ACTIVATED, THE AHU SHALL LOWER THE SYSTEM AIR TEMPERATURE TO MAINTAIN A COMFORTABLE ZONE AIR TEMPERATURE IN AN OCCUPIED ZONE. WHEN ACTIVATED, IT LOWERS THE SYSTEM AIR TEMPERATURE IN UNOCCUPIED ZONE.
3. UNOCCUPIED WARM UP MODE:

 WHEN UNOCCUPIED MODE IS ACTIVATED THE BAS SHALL DISABLE FAN CONTROL, CLOSE OUTDOOR AIR DAMPER, AND DISABLE COOLING COIL CONTROL.

4. UNOCCUPIED COOL DOWN MODE:

 WHEN UNOCCUPIED MODE IS ACTIVATED THE BAS SHALL ENABLE FAN CONTROL, DISABLE OUTDOOR AIR DAMPER, AND ENABLE COOLING COIL CONTROL.

5. CONTROL SEQUENCE

 POINT TO ENSURE BUILDING SAFETIES:
 - INTO TEMPORARY OCCUPIED MODE FOR A TIME PERIOD OF 2 HOURS.
 - BE M
4M4 FEEDER UP TO PENTHOUSE.
4M4 FEEDER DOWN TO GROUND FLOOR.
PROVIDE STRAIN RELIEF IN RISE.
NEW ELECTRICAL PANELS. ALL NEW 480V AND 120V CIRCUITS FED FROM HERE. NEW 400A 3P 4W 480Y/277V PANELBOARD FED FROM BASEMENT.
GENERAL DEMOLITION NOTES

1. ALL CIRCUITS AND SYSTEMS OUTSIDE OF THE PROJECT AREA ARE TO REMAIN IN SERVICE AT ALL TIMES THROUGHOUT THE WORK. COORDINATE ANY NECESSARY OUTAGES WITH OWNER PRIOR TO PROCEEDING.

2. DEMOLISH ALL FIXTURES AND CIRCUITS AS INDICATED. DEMOLISH ALL ASSOCIATED WIRES, RACEWAY, AND BOXES. MAINTAIN FUNCTIONALITY OF ALL REMAINING FIXTURES AND EQUIPMENT.

3. DEMOLISH ANY SYSTEMS AND APPURTENANCES DISCOVERED WITHIN WALLS BEING DEMOLISHED. WHERE THESE SYSTEMS SERVE AREAS OUTSIDE OF THE PROJECT AREA, COORDINATE WITH OWNER, ARCHITECT, AND ENGINEER TO MAINTAIN EXISTING FUNCTIONALITY IN A WAY COMPATIBLE WITH THIS PROJECT.

DEMOLITION NOTES:

1. REMOVE ELECTRICAL PANEL SHEET METAL ASSOCIATED WITH AHU-5 AND ASSEMBLE NEW SHEET METAL PANELS AS PER SHEET METAL NOTES.

2. REMOVE ALL ELECTRICAL FIXTURES, WIRES, AND APPURTENANCES FROM AHU-5.

3. REMOVE ALL CIRCUITRY FROM AHU-5.

4. CLEAR ALL SPACE FOR NEW AHU-5 INSTALLATION.

5. UPDATE PANELBOARD DIRECTORY.

SHEET NOTES:

CONNECT AHU LINE VOLTAGE LOADS AS REQUIRED. AHUS WILL BE FIELD ASSEMBLED AND WILL REQUIRE ELECTRICAL CONNECTIONS TO LIGHTS, SWITCHES, ETC. COORDINATE WITH MECHANICAL.

PROVIDE NEW DUCT SMOKE DETECTORS ON ADDRESSABLE SIMPLEX FIRE ALARM SYSTEM. PROGRAM PER EXISTING FIRE ALARM SEQUENCE.

PROVIDE NEW FIRE ALARM RELAY ON ADDRESSABLE SIMPLEX FIRE ALARM SYSTEM. CONFIGURE RELAY TO SHUT DOWN UNIT UPON ACTIVATION OF ALL DUCT SMOKE DETECTORS CORRESPONDING TO THIS AIR HANDLING UNIT.

PROVIDE 120V POWER FROM CIRCUIT IN PANEL 2M4 TO FIRE/SMOKE DAMPER.

ELECTRICAL AHU-5 PENTHOUSE - DEMOLITION

ELECTRICAL AHU-5 PENTHOUSE
Sheet Notes:

Connect all AHU line voltage loads as required. AHUs will be field assembled and will require electrical connections to lights, switches, etc. Coordinate with mechanical.

Provide new duct smoke detectors on addressable simplex fire alarm system. Program per existing fire alarm sequence.

Provide new fire alarm relay on addressable simplex fire alarm system. Configure relay to shut down unit upon activation of all duct smoke detectors corresponding to this air handling unit.

Provide 120V power from circuit in panel 2M4 to fire/smoke damper.

Sheet Notes:

1. Connect all AHU line voltage as required. AHUs will be field assembled and will require electrical connections to lights, switches, etc. Coordinate with mechanical.
2. Provide new duct smoke detectors on addressable simplex fire alarm system. Program per existing fire alarm sequence.
3. Provide new fire alarm relay on addressable simplex fire alarm system. Configure relay to shut down unit upon activation of all duct smoke detectors corresponding to this air handling unit.
4. Provide 120V power from circuit in panel 2M4 to fire/smoke damper.

Demolition Notes:

Demolish electrical and fire alarm connections to air handler. Demolish all wiring, conduit, boxes, and other appurtenances except where remaining in service for another purpose. Reprogram fire alarm system as needed.

Demolition Notes:

Demolish electrical and fire alarm connections to air handler. Demolish all wiring, conduit, boxes, and other appurtenances except where remaining in service for another purpose. Reprogram fire alarm system as needed.

General Demolition Notes:

Demolish all wiring, conduit, boxes, and other appurtenances as required. Coordinate with owner, architect, and engineer to maintain functionality in a way compatible with this project.

Demolish all fixtures and circuits as indicated. Demolish all associated wires, raceway, and boxes. Maintain functionality of all remaining fixtures and equipment.

Demolish all systems and appurtenances discovered within walls being demolished. Coordinate with owner, architect, and engineer to maintain functionality in a way compatible with this project.
GENERAL DEMOLITION NOTES

1. All circuits and systems outside of the project area are to remain in service at all times throughout the work. Coordinate any necessary outages with owner prior to proceeding.

2. Demolish all fixtures and circuits as indicated. Demolish all associated wires, raceway, and boxes. Maintain functionality of all remaining fixtures and equipment.

3. Demolish any systems and appurtenances discovered within walls being demolished. Where these systems serve areas outside of the project area, coordinate with owner, architect, and engineer to maintain existing functionality in a way compatible with this project.

DEMOLITION NOTES:

Demolish electrical and fire alarm connections to air handler. Demolish all wiring, conduit, boxes, and other appurtenances except where remaining in service for another purpose. Reprogram fire alarm system as needed.

SHEET NOTES:

- Provide new panelboard, fed from switchboard in basement. Maintain panel in front of existing copper. Re-work overhead copper to provide code-required dedicated space.
- Provide new transformer and listed wall stand. Wall-mount new transformer overhead above panelboards.
- Provide new panelboard, fed from switchboard in basement. Coordinate with mechanical.
- New duct smoke detectors on addressable simplex fire alarm system. Program per existing fire alarm sequence.
- New fire alarm relay on addressable simplex fire alarm system. Configure relay to shut down unit upon activation of all duct smoke detectors corresponding to this air handling unit.
- Provide 120V power from circuit in panel 2M4 to fire/smoke damper.

ELECTRICAL AHU-8 PENTHOUSE - DEMOLITION

ELECTRICAL AHU-8 PENTHOUSE
<table>
<thead>
<tr>
<th>NOTES</th>
<th>MARK</th>
<th>CONFIGURATION</th>
<th>(kVA)</th>
<th>MATERIAL</th>
<th>TYPE</th>
<th>CLASS (C)</th>
<th>RISE (C)</th>
<th>OCPD (AMPS)</th>
<th># RUNS</th>
<th>PHASE</th>
<th>GROUND</th>
<th>CONDUIT</th>
<th>RATING</th>
<th>AMPACITY</th>
<th>OCPD (AMPS)</th>
<th># RUNS</th>
<th>PHASE</th>
<th>GROUND</th>
<th>CONDUIT</th>
<th>RATING</th>
<th>AMPACITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHU-7</td>
<td>AIR HANDLING UNIT</td>
<td>7</td>
<td>480</td>
<td>3</td>
<td>4</td>
<td>50hp VFD</td>
<td>4M4</td>
<td>100</td>
<td>81</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>8</td>
<td>1-1/4"</td>
<td>60°C</td>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AHU-5</td>
<td>AIR HANDLING UNIT</td>
<td>5</td>
<td>480</td>
<td>3</td>
<td>4</td>
<td>30hp VFD</td>
<td>4M4</td>
<td>80</td>
<td>50</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>3/4"</td>
<td>60°C</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AHU-8</td>
<td>AIR HANDLING UNIT</td>
<td>8</td>
<td>480</td>
<td>3</td>
<td>4</td>
<td>50hp VFD</td>
<td>4M4</td>
<td>100</td>
<td>81</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>8</td>
<td>1-1/4"</td>
<td>60°C</td>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>480V DELTA</td>
<td>120/208</td>
<td>GROUNDED WYE</td>
<td>30</td>
<td>Cu</td>
<td>NEMA 2</td>
<td>220</td>
<td>150</td>
<td>50</td>
<td>1</td>
<td>8</td>
<td>10</td>
<td>1"</td>
<td>75°C</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SERVICE LIGHTS</td>
<td>120</td>
<td>1</td>
<td>2</td>
<td>500VA</td>
<td>N1</td>
<td>TS</td>
<td>20/1</td>
<td>2M4</td>
<td>20</td>
<td>20</td>
<td>1</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>1/2"</td>
<td>60°C</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SERVICE LIGHTS</td>
<td>120</td>
<td>1</td>
<td>2</td>
<td>500VA</td>
<td>N1</td>
<td>TS</td>
<td>20/1</td>
<td>2M4</td>
<td>20</td>
<td>20</td>
<td>1</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>1/2"</td>
<td>60°C</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SERVICE LIGHTS</td>
<td>120</td>
<td>1</td>
<td>2</td>
<td>500VA</td>
<td>N1</td>
<td>TS</td>
<td>20/1</td>
<td>2M4</td>
<td>20</td>
<td>20</td>
<td>1</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>1/2"</td>
<td>60°C</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTROLS</td>
<td>120</td>
<td>1</td>
<td>2</td>
<td>500VA</td>
<td>INTEGRAL</td>
<td>2M4</td>
<td>20</td>
<td>20</td>
<td>1</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>1/2"</td>
<td>60°C</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UV LIGHTS</td>
<td>120</td>
<td>1</td>
<td>2</td>
<td>500VA</td>
<td>N1</td>
<td>TS</td>
<td>20/1</td>
<td>2M4</td>
<td>20</td>
<td>20</td>
<td>1</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>1/2"</td>
<td>60°C</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>